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The effect of the rotation of the central body on the orbit of 
a particle 

Brendan Breenl. 
Mathematics Department, Imperial College of Science and Technology, London SW7 2RH, 
UK 

Received I O  August 1973 

Abstract. The general postnewtonian metric expansion of Nordtvedt is modified in such a 
way that the effects of the rotation of the central body on the orbit of a test particle can be 
examined. This enables formulae to be found for the additional advance of the perihelion 
and rate ofprecession of the normal of the orbit about the axis ofrotation in general relativity 
and in the Brans-Dicke and Nordtvedt scalar-tensor theories. In the case of general 
relativity the rate of precession is found to be half the value previously given by Lense and 
Thirring. 

1. Introduction 

In a previous paper (Breen 1973, to be referred to as I) some of the consequences of the 
general postnewtonian metric expansion of Nordtvedt were considered. For n moving 
sources this metric is : 

where mi, r i ,  ui and ui are respectively the geometrized mass, position, velocity and 
acceleration of the ith source ( i  = 1, .  . . , n). a, p, y ,  x, a', a", a'" and A are dimensionless 
constants taking specific values in particular gravitational theories (see I for the values 
of these parameters in general relativity, the Brans-Dicke theory and the Nordtvedt 
scalar-tensor theory). 

In the present paper the metric of equation (1) is modified so that the effect of the 
rotation of the central body on the orbit of a test particle can be considered. These effects 
were first examined in general relativity by Lense and Thirring (1918) who found that (i) 
there is an additional advance of the perihelion and (ii) the normal to the plane of the 
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orbit precesses about the axis of rotation of the central body. These two effects will be 
examined here for the general metric and this will enable the values to be found for the 
three theories considered in I. In the case of general relativity it is found that the addi- 
tional advance of the perihelion agrees with the well known result, but the rate of pre- 
cession of the normal of the orbit is half the value found by Lense and Thirring. 

2. Metric and equations of motion 

The metric of equation (1) will now be integrated in such a way as to produce the exterior 
metric of a uniform sphere rotating with constant angular velocity R. (The rotation will 
be assumed to be slow, ie the velocity at the surface of the sphere is small compared with 
the velocity of light.) Let the n sources in equation (1) be moving so that they form a 
(discontinuous) body rotating with angular velocity a. Choose coordinates (x, y, z) so 
that (initially) the orbit of the particle P is in the (x, y) plane and the axis of rotation is 
in the ( y ,  z) plane making an angle A with the z axis (see figure 1). Then the number of 
sources can be allowed to tend to infinity so as to produce in the limit a continuous 
sphere of uniform density. This is a justifiable procedure since as the orbiting particle 
is necessarily outside the central body no singularities can occur. The only apparent 
exception is the a’ term of goo, but this can be dealt with by the usual method of ex- 
cluding a sphere of radius E around the singular point, evaluating the integral, and then 
letting E -, 0. 

/ 
X 

Figure 1. Configuration of coordinates for the central sphere and the orbiting particle P. 

The new forms of the a and p terms of goo and the y term of gk, can be written down 
immediately as these only involve the expression that would occur in newtonian theory 
for finding the potential of a point outside a sphere. The x, a’, a” and a”’ terms of goo will 
be ignored here as the a’ term makes no contribution to the effects to be considered, and 
the x, a” and a”‘ terms only make contributions of the order of 22’. Thus the integrated 
forms of equations ( l a )  and (IC) are 

m m2 
go, = 1 -2a-+2p- 

r r2 

and 
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where m = GM/c* is the geometrized mass of the sphere. The integrated form of equa- 
tion ( lb)  is 

p is the constant density of the sphere, and R = Jr-r ‘ l  (see figure 1). Now 

dr’ 
- =  R x r ‘  
dt 

where 

R = (0, R sin A, R cos A) 
and 

r’ = (r’ sin 8’ cos 4’, r‘ sin 8’ sin 4’, r’ cos e‘), 
so that 

dr’ 
dt 

= (0 sin r‘ cos 8’ - R cos 1 r’ sin 8‘ sin (b’, R cos A r‘ sin 8‘ cos 4’, - 0 sin A r’ sin 8’ cos 4’). 
Since 

- 

r = (r cos 4, r sin 4 , O )  
it follows that 

R = Ir -r’l = [r2 + r‘’ - 2rr’(sin 8’ cos 4’ cos 4 +sin 8’ sin 4’ sin c#J ) ] ”~  

and hence, 

1 rI2 
2 r  8’ cos (b’ cos 4 + sin 8’ sin 4’ sin 4)  -- 7 

3 rf2  
2 r2 + - -(sin 8’ cos 6‘ cos (b + sin 8’ sin 4’ sin 4)’ + . . . 

where it is assumed that terms of the order (a/r)3, where a is the radius of the sphere, are 
negligible. Straightforward, but laborious, calculations then yield : 

4Ama2 y 
g o ,  = -__ 5c ;JRCOSi, 

4Ama2 x 
5c r3 

g o ,  = +- --R cos A, 

4Ama’ x 
g o ,  = -- -0 sin A. 5c r3 
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The equations of motion of the orbiting particle are obtained by substituting the 
above equations ( 2 )  into equation (8), via equation (9), of I. The result is the following 
three scalar equations : 

x(x3 - y f )  + o ( ~  - 4), 

y(x3 - yf) + o(c- 4). 

z 4Ama2Q sin 2 ( 
r3  5r3 ; ) j j =  -amc2--  f - 3 ( r .  U)? + O ( C - ~ ) .  

( 3 )  

( 5 )  

In deriving equations (3) ,  (4)  and ( 5 )  use has been made of the fact that the orbit is a plane 
in newtonian theory, ie z ,  i and z are all of order c-’. Also, as will be seen in $ 4 ,  A 
is a constant to  order c - ~ .  

It may be noted that these equations can also be obtained directly from equation (IO) 
of I, by letting the number of sources tend to infinity and integrating in the manner out- 
lined above. But the calculations involved are even more laborious than those outlined 
here. 

3. Advance of perihelion 

The addition to the perihelion advance caused by the slow rotation of the central body is 
obtained from equations (3) and (4). The method used here is similar to that of $ 5 of I. 

On  changing to polar coordinates x = r cos 4, y = r sin 4 (in the (x, y )  plane of 
figure l), equations (3) and (4 )  become 

4Ama2Q cos A 
5r2 qj + 0 ( ~ - 4 )  + 

and 

m 4Ama2Q cos E, 
i. + o ( ~  - 4). 

I d  
- -(r2qj) = 2(a+y)-iqj- 
r dt r 5r3 (7) 

Integrating equation (7) in the newtonian approximation gives r 2 4  = h + O(c- ’), where 
h is a constant. Using this result, equation (7) can be integrated in the postnewtonian 
approximation as 

r2q3 = h + -  
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On writing U for l/r, using equation (8) and the fact that 

d2u mc2 
- + U  = a - + O ( c - 2 ) ,  w2 h2 

(9) 

equation (6) can be written as 

d2u mc ’ m2c2 
w2 h h2 -+U = aT+(4ci2+2cry-2/+--u+ym 

+ o ( ~  - 4). (10) 
4Ama2R cos A [ 

5h 
(:;) ‘1 8Aam2a2c2R cos E- U 

5h3 U , +  - - - 

From equation (9) it follows that 

me2 
h U = a+l+€c0s($-$,))+0(c-2), 

where c is the eccentricity of the orbit and $o is a constant. On substituting equation ( 1  1) 
into the right-hand side of equation (10) it becomes 

d2u mc ’ mc2 
- + U  = aT+constant terms of order C - ~ + ~ ~ - - - E C O S ( $ - $ ~ )  w2 h h2 

m’c’ 16Acim2a2c2R cos A )  + O(c - 4), 5h3 
(4ci2+4ay-2/?)---- 

h2 

Since a particular integral of 

d2u 
-+U A COS $ 
ddJ 

is 

U = +A$ sin $, 

equation (12) gives 

m2c2 8Aam2a2c2R cos II  
5h3 

1 x 4$ - $0) sin(+ - $0) 

+constant and periodic terms of order c - ,  + O(C-~) .  

From this it follows that the angular advance of the perihelion, per revolution, is 

m2c2 16naAm2a2c2R cos A 
[2a(ci+:1)-P]2x,,- 5h3 

The first term of equation (13) is the usual one for a non-rotating body (compare with, for 
example, equation ( 2 5 )  of I with m, = 0), and the second term is the addition caused by 
the rotation of the central body. 

In general relativity ci = A = 1, and in this case the second term of equation (13) 
agrees with the result given by Lense and Thirring (1918). (Actually, it only agrees with 
their result in the case A = 0, but agrees with the correction to their result given by 
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Kalitzin (1958) for the case 1 # 0). In both the Brans-Dicke and Nordtvedt scalar- 
tensor theories a = 1 and A = (3 + 2w)/(4 + 2w), where w is the dimensionless constant 
of the theories. So in these two theories the general relativistic result is multiplied by the 
factor (3 + 2w)/(4 + 2w). 

4. Precession of normal of orbit 

The rate at which the normal to  the orbit of the test particle precesses about the axis of 
rotation of the central body can be found from equation (5). 

Since 

r2d = h+O(c-') 

it follows that 

.. h2 d2 z d2 1 z = -  - -  - 
r3 [dqh2 ( r  ) ' @ ( ; ) I  + 0(c-4)' 

But from equation (9) 

and so 

Hence equation (5) can be written as 

d2  z z 
&p(;)+;= - 5h2 

4AmazQsin1( i - 3(v . ;) + o ( ~ -  4). 

Using x = r cos 4 and equation (1  l), equation (14) becomes 

4aAm2a2c2SZsin,4 
5 h 3  

x [sin 4 + 26 sin($ - $,,) cos 4 + c cos(4 - &) sin $1 + O(C-~).  

Noting that a particular integral of 

d2w -+w = A s i n 4  w2 

w = - -  :A 4 cos 4, 
is 

it follows from equation (15) that 

Z 1 4aAm2a2c2Q sin 1 - -  - -- 
r 2 5h3 r#~ cos 4 +periodic terms of order c -  + O(C-~) .  

(14) 

From the way in which the coordinate system was chosen initially (see figure l), it can 
be seen from equation (16) that the value of z/r where the orbit intersects the (x, z )  plane 
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decreases by an amount 61 for each revolution of the test particle (see figure 2), where 

4zaAm2a2c2R sin J. 
5h3 

dJ. = 

X I /  

Figure 2. Coordinates for describing the motion of the normal of the orbit of the particle. 

Hence the plane of the orbit appears to rotate about the y axis. But after one revolution 
let I ‘  be the inclination of the axis of rotation to the new z axis, then 

cos ,I’ = cos E. cos d,I 

= cos 1. + o ( ~  - 4), 

by equation (17). So the z axis (ie the normal to the orbit) remains inclined at a constant 
angle I to the axis of rotation to order c- ’. This means that the non-periodic effect of 
equation (16) will appear as a precession of the normal to the plane of the orbit about the 
axis of rotation. The angular precession dp, per revolution and in the sense of R, is given 

(18) 

by 
4nctAmza2c2R 

5 h 3  
- dA 

sin I. 
d p = y - =  + 

On substituting the values c( = A = 1 in equation (18) the result for general relativity 
is obtained, namely, 

4zm’ a ’c 2R 
5h3 ’ 

dp = 

This is half the value given by Lense and Thirring (1918), which indicates that there must 
have been some error in their calculations. This view is supported by the fact that 
Kalitzin (1958) has already corrected a more substantial and obvious error in their 
calculation of the additional perihelion advance. 

As before, in both the Brans-Dicke and Nordtvedt theories the general relativistic 
result is multiplied by the factor (3 + 20)/(4+20). 
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